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FREE FERMION SOLUTION FOR DIMER PROBLEM
R.Hayn*, V.N.Plechko

The new noncombinatorial approach to the dimer problem based on integra-
tion over fermionic fields is presented. The partition function of the closed-
packed dimer model on the inhomogeneous rectangular lattice is obtained in the
form of the Gaussian integral over Grassmaun.variables.

The investigation has been performed at the Laboratory of Theoretical Phy-
sics, JINR and Max Planck Institut flir Festkérperforschung, Stuttgart,
Germany. .

Pewenue 3anaun AHMepoB u cBobonHue pepMHOHK
P.Xaiin, B.H.ITheuxo

TNMpennoxen HOBHIH HekOMOMHATOPHLIN nOAXOA K 3apaue ANMEpPOoB,
OCHOBAHHBIN HA MHTETPHPOBAHHUM NO PEPMHOHHBIM NonaM. Jlas cTaTuCTHue-
CKOMt CyMMBI NIOTHOYNAKOBAHHON MMEPHON MOREAH HA HEORHOPOAHOM nps-
MOYTOJILHOR PEWETKE HARAEHO BhIPAXKEHHE B BHJIC FBYCCOBCKONO HHTErpana no
rPacCMAHOBLIM NEPEMEHHbIM.

Pa6ora swmnonneHa & JlaGopatopum Teopetnuecko pmankn OUSIU u 8
HMucruryre TBepaoro tesna O6mectsa Maxca Inauxa, Lliryrrapr, Fepmanms.

1. Introduction

The closed-packed dimer model on the homogeneous rectangular lattice
was first solved by Kasteleyn [1 ] and Temperley and Fisher [2]. Besides its
importance for the understanding of the dimer combinatorics itself, this re-
markable solution has contributed much to the theory of the 2D Ising model
and the other lattice problems in statistical mechanics [3—5]. The dimer
models have also found physical applications in different branches. We
mention here the connection of the dimer problem on the hexagonal lattice
[6] to commensurate-incommensurate phase transitions due to a domain-
wall analogy [7,8 ]. This also provides us with a model for the Pokrovsky —
Talapov phase transition [9]. The second line of interest arises from the
RVB theory of high-T - superconductivity [10—12 ]. The classical dimer mo-

del is here a structural ingredient of the theory to describe the short range
resonating valence bond state [11,12}. The important feature of the dimer
model is its fermionic nature. Kasteleyn [1,6] used combinatorial argu-
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ments to show that the statistical sum of dimer problems can be expressed in
terms of Pfaffian forms. In retrospection, this already suggests the
fermionic nature of the problem. The combinatorial fermionic analysis of
the problem has been performed later on by Samuel [13 ] and Abanov [14].
However, the combinatorial approaches are rather complicated and differ
significantly from the methods commonly accepted in solid state physics
where the dimer models have found recently important applications.

In this note we present a new constructive solution for the 2D dimer
problem based on the Grassmann variable (fermionic) integrals and facto-
rization principles for the density matrix. The approach is straightforward
and very simple, combinatorial considerations are not needed. We present
the basic ideas of fermionization by an example of the rectangular inhomo-
geneous lattice. For this lattice, we derive a representation for the partition
function in the form of a Gaussian fermionic integral. This means that the
dimer model is equivalent to the free fermion field theory on a lattice. The
principal point of the solution is the mirror-ordered representation for the
dimer density matrix. At this stage we apply the ideas first developed in the
context of the 2D Ising model [15].

2. The Closed-Packed Dimer Problem

We consider the closed-packed dimer problem on the inhomogeneous
rectangular lattice with free boundary. The lattice sites mn are numbered by
discrete Cartesian coordinates m=1,2,...,Mand n =1, 2, ..., N running
in horizontal and vertical directions, respectively. The dimers are objects
living on lattice bonds. The given bond may be either free or covered by a
dimer together with the two adjacent lattice sites. A closed-packed dimer
covering is such that each lattice site is occupied by exactly one dimer. The
lattice must have even number of sites to be covered completely in a closed-
packed fashion since each dimer covers exactly two sites. An example of a
closed-packed dimer configuration for a rectangular lattice is shown in
Fig.la. We will associate the horizontal bond (mn|m + 1n) and the vertical

bond (mnlmn + 1) with the site mn, as it is shown in Fig.lc. Let tf'l")l be the
weight of the horizontal mn-bond covered by a dimer, analogously we define
the weight t(nf,)' for the vertical mn-bond, see Fig.1c. The weight of a free
bond is 1. The Boltzmann weight of a configuration is the product of the
activities t("‘:')l (a = 1,2) of all occupied bonds and the partition function Q is

the sum over all possible closed-packed configurations. This partition
function (or generating function in combinatorial interpretation) is the main
subject of interest.
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The formal combinatorial definition for Q can be put in a more construc-
tive form as follows (also see [16 ]). With each lattice site mn we associate

the commuting nilpotent variable  _ with the property 17,2'"1 = 0 and write:

mn

M N
= 1 2
Q - '(S"l; Hl Hl (1 Em)ﬂnm”mﬂ n) ( tfm)t”mn”m n+l)’ @M
m=1 n=

with the free-boundary conditions: 7,,, n ="M n+1 = 0. The averaging
over separable, variable is here defined as follows:

(';Yp) (U003l n ) = O11[0]0]0] .. 2

mn

and the total averaging in (1) involves the - —
averagings over 5, = at all sites. By mul-

0
0
I

0

tiplication of the factors in the «density
matrix» in (1) we get a polynomial in -
variables in which the given 5, variable

il

0

i1
|
0

enters up to the fourth power. To fulfil the
closed-packing condition we have to pick
up only the terms in which each of the va-
riablesy,  is presented in the first power. a)

010
0o
0l

This is just realized by the selection rules
(2). Our goal is now to pass from the com-
muting variables # to the anticommuting
Grassmann variables a with the corres-
ponding change of averaging. The point is
that the Grassmann variables are «good»
variables, with many plausible proper-
ties, and we know how to extract numbers b
from the Grassmann-variable expres-
sions, which is not the case for the com- mMn+1
muting nilpotent z-variables.
t (2)
mn

Fig.1. a) The closed-packed dimer covering for a rec- .t {1 )
tangular lattice. b) A fragment of brick lattice, such a +

lattice is topologically equivalent to hexagonal lattice. mn m+in
¢) Enumeration of sites and bonds on a rectangular )

cell
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3. Grassmann Variables

We remember that the Grassmann variables are classic fermionic
numbers purely anticommuting to zero. Given a set of Grassmann variables

ay,..., ay, we have aa; + aq; = 0, af = 0. The Berezin’s rules of integration
over one variable are [17 }:

fdaj~aj= 1, fdaj-l =0. €)]

In the multidimensional integral the differential symbols da,,..., da,, are

again anticommuting with each other and with the variables. The basic for- .
mulas of the Grassmann-variable analysis are for the Gaussian fermionic
integrals [17]. The Gaussian integral of the first kind is related to the

determinant: NN

N Z Z a',A‘,jaT A
J 11 da} da; &' = det 4, S
j=1

~.

here {al., a;.'} is a set of completely anticommuting Grassmann variables, the

matrix in the exponential is arbitrary. The Gaussian integral of the second

kind is related to the Pfaffian form of the skew-symmetric matrix:
N ‘

1 N
2 2 Zl 248,

y &)
[ da,,..dayda e ="/

= Pfaff A, Aij = - Aji .

The Pfaffian form is some combinatorial polynomial in elements A i known

in mathematics for a long time [18]). The Pfaffian and determinant of ,Ihe
associated skew-symmetric matrix are algebraically related: detd =

= (Pfaff 2)2. This relation can be most easily proved in terms of the fermio-
nic integrals like (4) and (5) [13].
Let it be given two Grassmann variables a and a*. The elementary

Gaussian exponential is e'laa‘: 1 + daa® (the series terminates since
(aa*)? = 0). Making use of the basic rules (3), for the complete set of the
Gaussian averages we find: [ da*da elaa‘{l, a, a*, aa'} = {4, 0,0,1}. Note
that the linear terms give zero result as a consequence of [ da].-l = 0. We
can then factorize the typical dimer weight in (1) as follows:

L+ tny' = f da*da ™ (1 + tag) (1 + a'"). )
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We will apply the factorization like (6) in order to pass in (1) from the com-
muting x-variables to the anticommuting (%rassmann variables.

4. Fermionization

We first factorize the local weights from (1) following (6). To this end,

we introduce a set of purely anticommuting Grassmann variables {amn,

@y s B, B1un} s @ Pair per bond, are write:
0 = (dd® @, 0o
1+ tmn”nm”mﬂ n- f damndamn ¢ X
) ) - _ *
X (l + tnmamn"mn) (l + amnrlm+l n) —(;Sp AmnAm+l n’ (7a)
o) (b b
I+ tmn"mn"m n+1- f dbmridbmn ¢ X

(2) C _ -
X (l + tmnbmn”mn) (l + bmn"m n+l) = ;,SP anBm n+1’ (7b)

where we introduced the abbreviated notation for the arising Grassmann
factors:

- (1) * _ o
Anm =1+ tmnamnr’mn’ Am+l n- 1+ 4l m+1
- (2 * _ .
an =1+ tmnbnm"mn’ Bm n+l- 1+ bmn"m n+1’ @

and by Sp we denote Gaussian averagings like [ da*dae®(...) and

f db*dbe® (...) as is clear from above. Note that the indices mn of the
Grassmann factors in (7)—(8) are chosen to be equal to the mn indices of
the n-variables involved in the corresponding factors.

. *
There are in general the four factors A Amns Bms

index mn, which all involve the same variable »,,, associated with the mn-

B, with a given

site of the lattice. The idea is to group together the four factors with the same

1,,n,-Variable and to perform the n-averaging in each group of factors inde-

pendently. The obstacle is that separable factors (8) are neither commuting,
nor anticommuting with each other. Thus we have to make a special con-
sideration of ordering in the products of noncommuting factors.

22



To solve this problem, we will use a special arrangement of the Grass-
mann factors. The two main pnncnples are illustrated here by tutorial
examples:

(%)) (%,%)) (x%3) (x3%,) = xo(X, %) (xy%;) (X3X3) X4 C)
and
(%)) (X,%,) (x3%3) = (x,(x,(x3X;) X)) X)) = X XXy XXX $10))

In (9) we simply reread the product by joining the factors with the same
index. In (10) we assume that the doublets x/.ch are totally commuting with

any separable factors though the factors themselves may be noncommuting
with each other.

We must prepare such an expansion of the dimer density matrix into the
product of the noncommuting factors (8) that it is possible to perform the

1, -3veraging at each site. To this end, the Grassmann factors with given

mn are to be placed nearby in the process of averaging over 7, . What can

be used in the ordering arrangements is that the doubled factors
A A" and B B:'"nH presenting the bond weights in (7) can be

mn"m+1ln mn
considered as totally commuting objects, if taken as a whole, under the sign

of the Gaussian averaging. We thus may move symbols AmnAmJrl , and

anBm n+1 through any product of other Grassmann factors. With these

notes we now directly proceed to the construction of a suitable factorized
representation for the density matrix. In the forthcoming transformations
from (11) to (13) we omit for brevity the symbol of the Gaussian averaging
on the right-hand sides.

First, putting one weight between the two Grassmann factors of
another, we write:

1 2
(1 + tSm)l”mn”m-H n) (l + Sm)lnmn”m n+l)

=B _A A" B* an

mn  mnS m+ln mn+1”

Next, we fix n and multiply the factors over m applying the rules (9) and
10):

(1) 2 —
n (l t nnmn'7m+l n) (l fm)ﬂnmnm n+l)

m=1
&*
_n{ mn mn m+ln|an+l}—
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M
LI mn mn m+ln HI B*mn+l=

—_—

M M
*
I:[ mn mn mn H Bm n+1’ 12)

where the arrows indicate the directions of increasing m in the ordered pro-
ducts. In the last line we have taken into account that A;w +1 n= 1 dueto the

boundary condition 7,, , = 0, also see the definition of factors in (8).
And, on the contrary, on the left end of the ordered product in (12) we intro-
duced, formally, the lacking factors A} in which we put “:)n = 0, so that in
fact A? in = 1.

In turn, we now multiply the products (12) with respect to index n, with
n increasing from left to right, and applying (9):

n [ nAmn—r:n mn n Bn:+l}

in

n=1 | m=1

H { H an n Amn mn mn” as

n= m= m=

where in the final expression we again annihilate factors B:n N+1= 1 and

create factors B:'m = 1 with b:no = (), analogously to the boundary transfor-

mations in (12). In fact, being forced in (12) to separate the mn and
m n + 1 Grassmann factors in order to apply the linear arrangement (9)
with respect to m, in (13) we are trying to restore the normal state by gathe-
ring the factors with equal values of mn into separable groups.

For the dimer partition function (1) we thus come to the following facto-
rized representation:

M<— —_—

N M
Q= Sp n n n mn mn mn|’® a4
(m'a.b) n=1 | m=1 m=1

where we have restored the sign of the total Gaussian averaging over the
fermionic variables. Note that the original free-boundary conditions for the
n-variables have now been transformed into the free-boundary fermionic
conditions in (14). The n-averaging can be readnly performed in represen-
tation (14).
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The n-averaging reduces to the averaging over separable variables Monn

at the junction of the m-products in (14) and yields, finally, the product of
the linear forms:

L, = +{2y

"l’l mn mn mn "lll "l—l n

+ (-1 )m+lb 15

mn—1°

We first fix n and perform the 5-averaging at the junction form = 1,2,.., M,

and all over again for other values of n. At the first step, m = 1, we average
- (2)

the prOdUCt B"UlA"lll "Ul mn l+ ”nlll(t"lll "l'l+ tnmbmn m In +

+ bm n—1) t-.-with the result (15). Then we move the fermionic form L, A

from the junction to the left through the remaining product of B:‘nn factors,

this explains the appearance of the (—1)™*! factor in (15) in the general
case. The n-variables being eliminated, the partition function is the product

of the forms L, under the Gaussian fermionic averaging coming from (14).

To bring this expression into a more convenient form, we exponentiate the

factors L, introducing auxiliary Grassmann variables ¢, and making use

L
of the identity L, = f dc, ec’"" m*_This gives:

N M o,
* *
Q= f n H damndamndbmndbmnd"mn X

n=1 m=1

M N
xexp{> > la a +b b +c L 1]t (16)

mn mn mn-mn mn nn
m=1 n=1

with a('m 0, bm() = 0. We have in (16) the fermionic Gaussian integral.

This expression can in turn be simplified by integrating out the a- and b-

fields by using the identity [ da*dae™ ralral”_ L7L which follows

from the basic rules (3), here L', L'’ are some linear forms in c-variables.
The remaining integral is:

N M
Q=f H H dcmn

n=1 m=1

M N
1 +1,(2
X CXP( 2 Z [rfm) m+lncnm+( l)m rfm) m n+lcmn]] an
. m=1n=1
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with free-boundary conditions for the c-variables, ein=0.¢yuns1 =0

This is the final exact representation for the partition function of the closed-
packed inhomogeneous dimer model disposed on a finite rectangular lattice
with free boundary. This expression is completely equivalent to the original
representation of eq. (1). The partition function is now expressed as a simp-
le fermionic Gaussian integral. In the field theoretical language the quad-
ratic fermionic form in the exponential is called fermionic action. Since the
action is quadratic, we deal here with the free fermion theory for the dimer
model.

3. Discussion

The Gaussian representation (17) is our main result. As it follows from
(5), the integral (17) defines a Pfaffian form, this fact is in accordance with
the Kasteleyn analysis of dimer combinatorics [1 ). We stress however that
we have simply calculated (17) in a formal way, without using any combi-
natorial considerations.

It is important that the fermionic representation (17) is obtained in the
most general case of an inhomogeneous distribution of the dimer weights.
This can be used at least for three purposes: (i) one can express the dimer-
dimer correlation functions simply by differentiating (17) with respect to

the local weights tf:’,)l, (ii) one can study the disordered problem or the in-

fluence of impurities, and (iii) one can consider in a simple way problems
with a complicated structure of the elementary cell. We also note that the
representation (17) contains all the information about the brick lattice, see
Fig.1b, which is equivalent to the hexagonal lattice neglecting the boundary
effects. The fermionic representation for Q for the brick-hexagonal lattice

arises simply by making zero some of the vertical weights tf:,)' in accordance

with Fig.1b. It is interesting that the homogeneous hexagonal lattice
exhibits an exotic phase transition [6—8 ) as distinct from the homogeneous
rectangular lattice with no phase transition. Eq. (17) thus preserves the in-
formation about partition functions and correlations in homogeneous rec-
tangular and hexagonal lattices and may be a good starting point also for
further studies.

For actual calculations for homogeneous lattices, the standard device is
to pass to the momentum space (Fourier transformation for fermions). Let
us illustrate this for the rectangular lattice. In the homogeneous case,

tf,i,)l = t, and t("f’)l = 1,, the fermionic action in (17) can be put to block-diago-
nal form by the substitution:
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M
S 3 sina B sinars. (18)

‘= M+ DN T M+1" N+
p=1¢g=1

Let both M and N be even. The partition function then appears in the form
(momentum space representation):

7
X (c ) + 2it,, cos

pq CM+1- -pN+1- q+ cpN+l—ch+l—pq

+c 19

X (c M+l—pch+l—pN+|—q)}'

pN+l q
The pg sum in (19) is reduced to a half-interval %M, -% N when we select
explicitly and join together all the terms including the variables Cpg’
M+1-pg SpN+1-g> SM+1-p N+1-¢" We thus have to integrate separately
over the groups of variables o’ M+1-pg> SoN+1-¢° SM+1=p N+1-¢" Eva-
luation of the integral gives:

—M EN
Q= H I1 [41 cos? M+ w1t 2 cos? Nn-:-]l]’ (20)
p=1 g¢=1

in accordance with the combinatorial result [1,2].

The fermionization procedure can also be performed, as a generaliza-
tion of the treatment exposed above for the free boundary, for the toroidal
(periodic in both directions) boundary conditions for the inhomogeneous
rectangular lattices. We refer here to the experience with the 2D Ising model
[19 ]. Not going into the detail, the final result is:

' 1

where the fermionic integral G is the integral (17), but now we have the four
different combinations of the aperiodic- periodic closing conditions for fer-

mions: (*1+) = (Crr41 n= Xl ye1= 2 ¢,pyy)- In the homogeneous

@) _ . .
case tfm)l t,» the four integrals in (21) can again be evaluated explicitly,

reproducing in a simple way the result of complicated combinatorial ana-
lysis [1].
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Note that putting ¢; = ¢, = 1 in (20), or in the corresponding analytic

expression given by (21) in the homogeneous case, we simply get the num-
ber of the dimer configurations on the corresponding lattices. Fisher [20]
has evaluated, as illustration, the number of all possible coverings of the.
checkerboard by dominos, which appears to be N = 12988816 (this num-

ber is given by (20) withM = N =8 and 1, = 1, = 1). We have evaluated the

analogous number for the checkerboard swept into a torus. The torus num-
ber appears to be significantly larger, N = 311853312.

In conclusion, we have reformulated the closed-packed dimer problem
on the inhomogeneous 2D lattice as a free fermion field theory. The parti-
tion function is obtained in the form of a Gaussiann Grassmann-variable
integral. This puts the dimer problem, which is originally a combinatorial
problem, more close to the typical models of quantum statistics and solid
state physics with the opportunity to apply the well developed field-
theoretical methods. In the homogeneous cases fermionization yields exact
analytic solutions for thermodynamic functions and correlations. The
fermionization procedure can as well be applied to more complicated dimer
like problems equivalent to non-Gaussian fermionic theories. Grassmann
variables are the powerful tool for studying dimer-type models.

This work was supported by the Heisenberg-Landau Program.
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